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Stability analysis of rapid granular chute flows:
formation of longitudinal vortices
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IUSTI, Technopôle Château-Gombert, 5 rue Enrico Fermi, 13453 Marseille Cedex 13, France

(Received 28 August 2001 and in revised form 10 April 2002)

In a recent article (Forterre & Pouliquen 2001), we have reported a new instability
observed in rapid granular flows down inclined planes that leads to the spontaneous
formation of longitudinal vortices. From the experimental observations, we have
proposed an instability mechanism based on the coupling between the flow and the
granular temperature in rapid granular flows. In order to investigate the relevance of
the proposed mechanism, we perform in the present paper a three-dimensional linear
stability analysis of steady uniform flows down inclined planes using the kinetic theory
of granular flows. We show that in a wide range of parameters, steady uniform flows
are unstable under transverse perturbations. The structure of the unstable modes is
in qualitative agreement with the experimental observations. This theoretical analysis
shows that the kinetic theory is able to capture the formation of longitudinal vortices
and validates the instability mechanism.

1. Introduction
Unlike classical fluids which are well-described by Navier–Stokes constitutive equa-

tions, granular flows still lack a unifying description. For slow deformations at high
density, multi-body interactions and friction between grains control the dynamics of
the flow. On the other hand, when the energy injected into the material is large, the
particles are strongly agitated and interact mainly via instantaneous collisions. In this
collisional regime, the material can be compared to a gas and a ‘granular temperature’
can be defined in relation to the random motion of the particles (Ogawa, Umemura
& Oshima 1980; Campbell 1990). This analogy between a collisional granular flow
and a molecular gas has led to the development of a kinetic theory for rapid granular
flows (Jenkins & Savage 1983; Haff 1983; Lun et al. 1984; Brey et al. 1998; Sela &
Goldhirsch 1998) which is inspired by the kinetic theory of dense gas (Chapman &
Cowling 1970). However, the main difference with classical molecular gases is that
the collisions between granular particles are inelastic. If no energy is supplied to
the system, the granular temperature decays rapidly because each collision removes
kinetic energy from the particles. It can be shown that a free dissipative gas can form
dense clusters and eventually collapses in a finite time, as a consequence of inelasticity
(McNamara & Young 1992; Goldhirsch & Zanetti 1993). In order to maintain the
collisional regime, energy must therefore be supplied to the system, for instance by
strongly shaking the boundaries (Warr, Huntley & Jacques 1995; Falcon, Fauve &
Laroche 1999; Rouyer & Menon 2000).

In a rapid granular flow, another way to maintain granular temperature is to impose
a shear on the mean flow. In that case, the granular temperature results from a balance
between the production by the shear work and the loss due to the inelastic collisions.
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Figure 1. (a) Experimental set-up. The inset is a top view of the free surface lit from the side when
the instability is fully developed (the granular material is sand 0.25 mm in mean diameter, the angle
of inclination of the plane is θ = 41◦, the opening of the reservoir is hg = 13 mm). (b) Sketch of
the flow deduced from the measurements showing the surface deformation, the longitudinal vortices
and the density variations.

In return, the granular temperature influences the mean flow because the pressure
and the transport coefficients (e.g. viscosity, thermal conductivity) depend on the
temperature, as in a molecular gas. The coupling between the granular temperature
and the mean flow is one of the fundamental properties of rapid granular flows.
Understanding the role of this coupling is thus important in order to better define
the analogies and the differences between classical fluids and granular flows.

Recently, we have reported an instability observed in rapid granular flows down
rough inclined planes which seems to result from this coupling (Forterre & Pouliquen
2001). The experimental set-up was a rough inclined plane as sketched in figure 1(a).
For high inclinations and large openings of the reservoir, the free surface deforms in a
very regular pattern of longitudinal streaks parallel to the flow direction (see figure 1a).
Velocity measurements of the grains have revealed that the streaks correspond to the
formation of longitudinal vortices as sketched in figure 1(b). Although such structures
are common in fluid mechanics (e.g. Görtler vortices, see Saric 1994, or streaks in
turbulent boundary layers, see Kachanov 1994), they had not been observed before
in granular flows. The main experimental observations are the following:

(i) the wavelength λ of the surface deformation scales with the mean thickness h
of the flow (λ ∼ 2–3 h);

(ii) the troughs correspond to the downward part of the flow while the crests
correspond to the upward part (see figure 1b);

(iii) the x-component of velocity is greater in the troughs than in the crests;
(iv) troughs are dense whereas crest are dilute (see figure 1b);
(v) the pattern drifts slowly in the transverse direction.

These observations suggest the following instability mechanism to explain the for-
mation of the longitudinal vortices (Forterre & Pouliquen 2001). Because of the
collisions with the rough bottom, particles close to the plane are strongly agitated, i.e.
the granular temperature is high at the bottom. Since high temperature means low
density, the density may become lower at the bottom than at the free surface. The
flow is then mechanically unstable under gravity resulting in longitudinal vortices.
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The mechanism we propose is analogous to the classical Rayleigh–Bénard instability
observed when a fluid is heated from below. However, in the present case the heating
is not imposed by a thermostat but is created by the flow itself through the coupling
between temperature and shear specific to granular media.

The above explanation for the vortices formation is based on density profile in-
version. In a granular dissipative gas, the density profile results from a complex
balance between gravity, collisions and dissipation and its prediction is not straight-
forward. Density profiles with higher density at the free surface than below have
been observed in numerical simulations of rapid granular flows using discrete element
methods (Campbell & Brennen 1985; Azanza 1998). However, no instability was
observed because the simulations were two-dimensional. In the present paper, we
investigate the relevance of the proposed instability mechanism by using the kinetic
theory of granular flows. We present a linear stability analysis of steady uniform
flows down inclined planes, in the framework of the classical kinetic theory of Lun
et al. (1984). This theory provides a set of hydrodynamic equations coupling the
density, the velocity and the granular temperature under the assumption of instanta-
neous binary inelastic collisions. Although steady uniform flows down inclined planes
have been studied within this framework (Anderson & Jackson 1992; Ahn, Brennen
& Sabersky 1992; Azanza, Chevior & Moucheront 1999), no stability analysis has
been performed. Stability studies of rapid granular flows using the kinetic theory
have mainly focused on two-dimensional Couette flows (Savage 1992; Alam & Nott
1998; Nott et al. 1999) or gravity-driven flows in vertical channels (Wang, Jackson &
Sundaresan 1997; Wang & Tong 2001).

We do not expect from the present study a complete and quantitative description
of the longitudinal vortices instability, since the applicability of the kinetic theory is
known to be limited. The lack of separation between the microscopic and macroscopic
scales inherent to inelastic gases (Tan & Goldhirsch 1999) and the existence of multi-
body interactions when density is high are serious difficulties which are the subject of
active research (Goldhirsch 1999). However, the kinetic theory qualitatively contains
the most important characteristic of rapid granular flow, i.e. the coupling between
shear flow and particle agitation due to the inelasticity of collisions. This coupling
being the core of the instability mechanism we propose, this analysis should capture
at least qualitatively the formation of longitudinal vortices.

The paper is structured as follows. Section 2 gives the governing equations and the
boundary conditions we will use in the paper. Basic flows, i.e. steady uniform flows
down inclined planes, are studied in § 3. Section 4 is devoted to the linearization of
the equations around the basic state and the numerical method. The results of the
stability analysis are given in § 5. Comparison with the experiment and discussion are
presented in § 6. Concluding remarks are given in § 7.

2. Kinetic theory of granular flows
In this section, we recall the equations of the kinetic theory of granular flow we

shall use to investigate the formation of longitudinal vortices.

2.1. Governing equations

The kinetic theory of granular flows provides a set of hydrodynamic equations
coupling the density ρ, the mean velocity u, and the granular temperature T under
the assumption of instantaneous binary inelastic collisions (the granular temperature
T is defined by 1

3
〈δu2〉, where δu is the random velocity fluctuations). In the presence
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of gravity, the hydrodynamic equations are

dρ

dt
= −ρ∇ · u, (2.1)

ρ
du

dt
= ρg+ ∇ · Σ, (2.2)

3

2
ρ

dT

dt
= Σ :∇u− ∇ · q − γ, (2.3)

where d/dt = ∂/∂t + u · ∇. The first equation (2.1) is the conservation of mass. The
second equation (2.2) comes from the conservation of momentum, where Σ is the
stress tensor and g is the gravitational acceleration. The third equation (2.3) is
the energy equation where the temporal variation of the random kinetic energy
is balanced by three terms. The term Σ :∇u represents the production of fluctuation
energy due to the work of the stress Σ during shear. The term −∇ · q, where q is the
flux of fluctuation energy, represents the conduction term. The term γ is the collisional
rate of energy dissipation. The distinctive feature of rapid granular flows lies in the
dissipative term γ due to the inelastic collisions between particles: it is responsible for
the coupling between the mean flow and the granular temperature.

The kinetic theory gives the constitutive relations for Σ, q and γ as functions of
the flow variables ρ, u and T . For the present purpose, we will use the closure due
to Lun et al. (1984). The total stress tensor Σ, the heat flux q and the rate of energy
dissipation γ are written as

Σ = −{P (ν, T )− ξ(ν, T )∇ · u}I + 2η(ν, T )S , (2.4)

q = −K(ν, T )∇T , (2.5)

γ =
ρp

d
(1− e2)f5(ν)T

3/2. (2.6)

Here I is the identity matrix, S = 1
2
(uij +uji)− 1

3
ukkδij is the deviatoric part of the rate

of deformation, ρp is the particle density, ν = ρ/ρp is the solid fraction and d is the
particle diameter. We have omitted in (2.5) the contribution of the gradient of ν to
the heat flux. This term increases the algebra considerably and we have checked that
it has little effect on the steady uniform solutions. Note that the collisional rate of
energy dissipation γ is proportional to (1− e2), where e is the coefficient of inelasticity
of the particles (0 < e 6 1). As in classical dense gases, the pressure P (ν, T ), the
viscosities (η(ν, T ), ξ(ν, T )) and the thermal conductivity K(ν, T ) depend on the solid
fraction ν and the temperature T :

P (ν, T ) = ρpf1(ν)T ,

η(ν, T ) = ρpd f2(ν)T
1/2,

ξ(ν, T ) = ρpd f0(ν)T
1/2,

K(ν, T ) = ρpd f3(ν)T
1/2,

 (2.7)

where the dimensionless functions f0(ν), f1(ν), f2(ν), f3(ν) and f5(ν) are given in
table 1 (Lun et al. 1984).

These functions involve the radial distribution function g0(ν). In the following, we
shall use the one suggested by Lun & Savage (1986):

g0(ν) =
1

(1− ν/νm)2.5νm
, (2.8)
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f0(ν) =
8
√
π

3
ην2g0(ν)

f1(ν) = ν + 4ην2g0(ν)

f2(ν) =
5
√
π

96

[
1

η(2− η)

1

g0(ν)
+

8

5

3η − 1

2− η ν +
64

25
η

(
3η − 2

2− η +
12

π

)
ν2g0(ν)

]

f3(ν) =
25
√
π

16η(41− 33η)

[
1

g0(ν)
+ 12

5
η(1 + η(4η − 3))ν + 16

25
η2

(
9η(4η − 3) +

4

π
(41− 33η)

)
ν2g0(ν)

]
f5(ν) =

12√
π
ν2g0(ν)

f6(ν) =
π
√

3

6νm
νg0(ν)

f7(ν) =
3
√

3π

12νm
νg0(ν)

Table 1. Dimensionless constitutive functions, η = 1
2
(1 + e).

where νm is the maximum solid fraction (νm = 0.6 in the following). This radial
distribution function is suitable for free-surface flows since the resulting equations
have no singularity at ν = 0. We have checked that this choice does not qualitatively
change the results by using other kinds of radial distribution functions, such as
the Carnahan–Stirling radial distribution (Jenkins & Savage 1983). Finally, all the
equations that follow will be written in terms of non-dimensional variables defined
by

(x̃, ỹ, z̃) =
1

d
(x, y, z), t̃ =

√
d

g
t, ν̃ =

ρ

ρp
, ũ =

1√
gd
u, T̃ =

1

gd
T , Σ̃ =

1

ρpgd
Σ.

(2.9)

For simplicity in the notation, the tildes will be omitted and the solid fraction ν will
be called the density in the following.

2.2. Boundary conditions

In order to solve the problem of granular flows down rough inclined planes, we have
to specify boundary conditions for ν, u and T both at the free surface of the flow and
at the plane. Unlike classical fluid, the velocity in rapid granular flows does not vanish
at a fixed solid boundary. Therefore, the rough plane may act as a source (resp. a sink)
of fluctuating energy when the shear work of the slip velocity is larger (resp. smaller)
than the inelastic loss due to collisions with the plane. Boundary conditions for rapid
granular flows at a rough surface have been the subject of extensive research (Hui
et al. 1984; Jenkins & Richman 1986; Johnson, Nott & Jackson 1990; Goldhirsch
1999). Here we will use the heuristic approach of Johnson et al. (1990) relating the
tangential stresses t · Σ · n and the heat flux q · n at the plane to density, slip velocity
us and temperature by

t · Σ · n = η∗(ν, T )‖us‖, at the plane, (2.10)

q · n = (u · Σ) · n− γ∗(ν, T ), at the plane. (2.11)
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The vector t is parallel to the plane and defined as t = us/‖us‖. The vector n is normal
to the plane. Finally the functions η∗(ν, T ) and γ∗(ν, T ) are given by

η∗(ν, T ) = φf6(ν)T
1/2,

γ∗(ν, T ) = (1− ew2)f7(ν)T
3/2,

}
(2.12)

where the dimensionless functions f6(ν) and f7(ν) are given in table 1. The relation
(2.10) is a transfer of momentum balance at the plane. Equation (2.11) expresses that
heat can be produced at the plane if the shear work is stronger than the loss of energy
due to collisions with the plane. The boundary conditions (2.10) and (2.11) depend
on two dimensionless parameters, φ and ew , which are related to the wall properties.
The parameter ew is the particle–wall coefficient of restitution. In the following, ew
will be taken equal to the particle–particle coefficient of restitution e. The parameter
φ is related to the rate of momentum transfer to the flow by the collision with the
plane. Its value can be related to the wall geometry in the case of two-dimensional
flows of disks (Jenkins & Richman 1986). For a rough plane made of close-packed
disks, one obtains a value φ ∼ 0.1. For three-dimensional flows, one can expect lower
values of φ since collisions do not always occur in the shear plane. We will use in the
following the value φ = 0.05 and will discuss its influence later.

At the free surface, the stresses and the energy flux must vanish. However, the
location of the free surface is not known a priori and its definition is somewhat
artificial for very dilute flows. Rather than define the location of the free surface, we
impose stresses and energy flux to vanish when the distance from the plane goes to
infinity. Note that the boundary conditions used here are somewhat different from
those used in previous studies (Johnson et al. 1990; Anderson & Jackson 1992; Ahn et
al. 1992; Azanza et al. 1999). In the work of Anderson & Jackson (1992), the thickness
h of the granular layer is taken as a control parameter. Numerical difficulties then
arise when trying to match the stress-free condition at the free surface (Johnson et
al. 1990). Ahn et al. (1992) do not define the free surface but require stresses to
vanish at infinity. However, they arbitrarily fix the density, velocity and granular
temperature at the plane. The same procedure is used by Azanza et al. (1999). Here,
we adopt a mixed point of view since at the plane the boundary conditions of Johnson
et al. (1990) are satisfied whereas at infinity the procedure of Ahn et al. (1992) is
chosen.

3. Steady uniform flows
The first step in performing a linear stability analysis is to determine the basic

flow, i.e. two-dimensional steady uniform flow. Steady uniform flows down inclined
planes have already been studied in the framework of the kinetic theory (Anderson
& Jackson 1992; Ahn et al. 1992; Azanza et al. 1999). It is not within the scope of
the present study to make an extensive investigation of steady uniform flows. Rather,
we shall focus on the shape of the density profile, which plays an important role in
the instability mechanism we propose.

3.1. Equations for steady uniform flows

We apply equations (2.1)–(2.3) with boundary conditions (2.10) and (2.11) to two-
dimensional steady uniform flows down inclined planes. We thus look for solutions
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for density, velocity and temperature in the following form:

ν(x, y, z, t) = ν0(z),

u(x, y, z, t) = u0(z)x,

T (x, y, z, t) = T0(z).

 (3.1)

In such a flow the derivatives parallel to the plane are zero and the mass-conservation
equation (2.1) is satisfied. The momentum-conservation equation (2.2) in the flow
direction (x-direction) and in the direction normal to the plane (z-direction) becomes

dΣxz0

dz
= −ν0 sin θ, (3.2)

dΣzz0

dz
= ν0 cos θ, (3.3)

where θ is the angle of inclination of the plane, Σxz0 = f2(ν0)T0
1/2 du0/dz and Σzz0 =

−f1(ν0)T0. The energy conservation (2.3) simplifies to

0 = Σxz0

du0

dz
− dqz0

dz
− γ0, (3.4)

where qz0 = −f3(ν0)T0
1/2dT0/dz and γ0 = (1− e2)f5(ν0)T0

3/2.
From (3.2) and (3.3) together with boundary conditions Σxz0 = Σzz0 = 0 at infinity,

one obtains Σxz0 = − tan θ Σzz0. Therefore, equations (3.2), (3.3) and (3.4) can be
written in the following form:

dν0

dz
= − 1

f′1(ν0)T0

(
ν0 cos θ + f1(ν0)

dT0

dz

)
, (3.5)

du0

dz
=
f1(ν0)

f2(ν0)
tan θT0

1/2, (3.6)

d2T0

dz2
=

(
(1− e2)f5(ν0)f2(ν0)− f2

1(ν0) tan θ

f2(ν0)f3(ν0)

)
T0 +

ν0f
′
3(ν0)

f3(ν0)f
′
1(ν0)T0

cos θ
dT0

dz

+
1

T0

(
f1(ν0)f

′
3(ν0)

f3(ν0)f
′
1(ν0)

− 1

2

)(
dT0

dz

)2

, (3.7)

where the primes denote differentiation with respect to ν0.
This system of three nonlinear ordinary differential equations requires boundary

conditions both at the plane and at infinity. At infinity, the stresses and the flux
of energy must vanish. It can be shown (Ahn et al. 1992) that these conditions are
satisfied if and only if the temperature gradient vanishes at infinity:

dT0

dz
→ 0 when z →∞. (3.8)

At the plane, relations (2.10) and (2.11) become

f2(ν0)T0
1/2 du0

dz
= φf6(ν0)T0

1/2u0 at z = 0, (3.9)

−f3(ν0)T0
1/2 dT0

dz
= f2(ν0)T0

1/2 du0

dz
u0 − (1− e2)f7(ν0)T0

3/2 at z = 0. (3.10)
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Figure 2. Phase diagram for steady uniform flows in the (h, ν̄)-plane. The thin solid lines give the
contours of constant angle θ. Along these lines, ν0(0) increases from bottom to top. The grey zone
is the domain of non-inverted density profiles. e = 0.6, φ = 0.05.

These relations can be combined with equation (3.6) to express the temperature and
the gradient of temperature at the plane as a function of density and velocity at the
plane:

T0 =
φ2f2

6(ν0)

f2
1(ν0) tan2θ

u2
0 at z = 0, (3.11)

dT0

dz
=
φf6(ν0)

f3(ν0)

(
−1 +

φf6(ν0)(1− e2)f7(ν0)

f2
1(ν0) tan2θ

)
u2

0 at z = 0. (3.12)

In order to integrate numerically the above boundary value problem, a ‘shooting
method’ has been chosen. The angle θ and the density at the wall ν0(0) are the
two control parameters whereas the slip velocity us = u0(0) is taken as the shooting
parameter. Then, the temperature and the gradient of temperature at the plane
are given by equations (3.11) and (3.12). The differential equations (3.5)–(3.7) can
therefore be integrated from z = 0 to z = ∞. This procedure is repeated for different
values of the shooting parameter us = u0(0) until the boundary condition at infinity
dT0/dz = 0 is satisfied. In practice, a fourth-order Runge–Kutta method is employed
and the equations are integrated up to a maximum value z = zmax. The boundary
condition at infinity is considered to be satisfied when the gradient of temperature is
smaller than 10−5 at z = zmax.

3.2. Results

By applying the above procedure to different values of the angle θ and the density
ν0(0), we were able to explore the whole set of steady uniform flows. However, in
order to help in the physical interpretation of the results, we present the results in the
(h, ν̄)-plane where h is the thickness of the flow and ν̄ the mean density. The thickness
h is defined a posteriori by the value z = h for which the density is 1% of the maximum

density inside the flow. The mean density ν̄ is simply given by ν̄ = (1/h)
∫ h

0
ν0(z) dz.

The relation between (θ, ν0(0)) and (h, ν̄) appears to be single valued, i.e. numerically,
a single solution exists for a given set (h, ν̄) (which is not the case if one chooses the
flow rate as a control parameter, see Johnson et al. 1990 and Anderson & Jackson
1992). The relation between (θ, ν0(0)) and (h, ν̄) is shown in figure 2 for e = 0.6 and
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Figure 3. (a) Density profiles ν0(z), (b) velocity profiles u0(z) and (c) temperature profiles T0(z) for
steady uniform flows at a fixed angle (θ = 20.5◦) when the mean density is increased. The inset
gives the value of (h, ν̄) for the different profiles (e = 0.6, φ = 0.05).

φ = 0.05. In this figure, the thin solid lines are obtained for constant inclination θ
by varying ν0(0). We observe that the angle θ has a strong influence on the thickness
of the flow h: the thickness of the flow rapidly increases on increasing the angle. For
angles θ > 23◦, the thickness diverges whereas for θ < 14◦, the thickness becomes less
than one grain diameter. Therefore, for a given set of parameters (e, φ) there exists
a finite range of angles where steady uniform flows are obtained. These results are
consistent with analytical solutions for steady uniform flows found in the high-density
limit (Anderson & Jackson 1992).

Typical solutions (ν0(z), u0(z), T0(z)) for steady uniform flows are given in figure 3.
They are obtained for θ = 20.5◦ by increasing the mean density ν̄, i.e. along the thin
solid line θ = 20.5◦ in figure 2. As the mean density is increased, the shear close
to the plane increases (see figure 3b). The difference between the temperature at the
plane and the asymptotic temperature for the top layer also increases with the mean
density (see figure 3c). Note that with our boundary conditions, the temperature is
always higher at the plane than in the rest of the material. Finally, the density profile
ν0(z) is strongly modified when varying the mean density (see figure 3a). For dilute
flows, the thickness h is large and the density profile is non-inverted, i.e. the density
decreases with z. As the mean density increases, the flow becomes thinner and the
free surface is better defined. At a given mean density, the density profile becomes
inverted, i.e. the maximum of density is no longer at the plane but in the bulk. In the
(h, ν̄) diagram of figure 2, the dividing line between non-inverted density profiles and
inverted density profiles is given by the solid line. Above this line, the maximum of
density is in the bulk.
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The shape of density profiles can be understood qualitatively by inspecting equa-
tions (3.5)–(3.7). Equation (3.5) shows that the sign of the density gradient results
from a competition between gravity, which tends to increase density close to the
plane, and the negative temperature gradient, which tends to decrease density close
to the plane. The temperature gradient results from the shearing at the base, which
heats the material from below, and the inelastic dissipation in the bulk, which cools
the material. Therefore, inverted density profiles are observed when heating due to the
shear at the base and the cooling due to dissipation in the bulk create a temperature
gradient strong enough to overcome gravity.

3.3. Influence of the parameters

The results presented so far have been obtained using e = 0.6 and φ = 0.05. Here we
discuss briefly the qualitative influence of the inelastic coefficient e and the boundary
parameter φ on the solutions presented above. First, inverted density profiles are
observed only for small values of φ. For φ > 0.3, no inverted density profile can
be obtained, neither by changing the control parameters (h, ν̄) nor by modifying the
coefficient of inelasticity e. For high values of φ, the plane is indeed no longer a source
of fluctuating energy (see equation (3.12)). The density gradient close to the plane is
therefore negative and no inverted density profile can be obtained. For values of φ
less than 0.3, the results are qualitatively the same as for φ = 0.05. Varying φ changes
the range of inclinations where steady uniform flows are observed. For example, the
maximum angle is increased from θ ∼ 23◦ to θ ∼ 32◦ on increasing φ from 0.05
to 0.15 (e = 0.6). No qualitative change is observed when changing the inelasticity
e either. Increasing the value of e decreases the angles and shrinks the domain of
steady uniform flows. With e = 0.8 (φ = 0.05), the range of angles is 11◦ < θ < 18◦.

Steady uniform flows with inverted density profiles can therefore be obtained in the
framework of the kinetic theory of granular flows. The question we address in this
study is the stability of these inverted density profiles under transverse perturbations.
Obviously, gravity is a destabilizing effect since the heavy fluid is above the light one.
However, gravity has to overcome the stabilizing effects due to viscosity and thermal
conductivity. In a rapid granular flow, viscosity, thermal conductivity and density
profiles are coupled with the flow and the prediction of the stability properties is not
straightforward.

4. Three-dimensional linear stability analysis
We investigate the stability of the steady uniform flows (ν0, u0T0) found in the

previous section using the classical normal mode analysis (Drazin & Reid 1981). The
basic flow is perturbed by infinitesimal disturbances, and its time evolution is studied
by linearizing the governing equations about the basic state. The perturbations are
then decomposed into different Fourier modes and because of the linearity of the
governing equations, the stability of each mode can be analysed separately.

4.1. Normal mode analysis

As pointed out by Alam & Nott (1998), the Squire theorem does not hold for
rapid granular flows since density and temperature are not constant across the layer.
Therefore, the first instability is not necessarily two-dimensional. In this study, we
are interested in the formation of longitudinal structures and we restrict our analysis
to flows which are invariant in the x-direction. The flow (ν, u, v, w, T ) is perturbed
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around the basic flow (ν0, u0, T0) and written as

ν = ν0(z) + ν1(y, z, t),

u = u0(z) + u1(y, z, t), v = v1(y, z, t), w = w1(y, z, t),

T = T0(z) + T1(y, z, t),

 (4.1)

where ν1, (u1, v1, w1) and T1 are respectively the density, velocity and temperature
disturbances. By substituting (4.1) into the governing equations (2.1)–(2.3) and then
linearizing about the basic state, we obtain a set of linear equations for (ν1, u1, v1, w1, T1)
(see Appendix A, §A.1). Then, we seek normal-mode solutions for density, velocity
and temperature perturbations:

(ν1, u1, v1, w1, T1) = Re[(ν̂(z), û(z), v̂(z), ŵ(z), T̂ (z)) eσt+iky]. (4.2)

We have restricted the stability analysis to temporal stability, i.e. the growth rate σ is
complex whereas the transverse wavenumber k is assumed to be real. The basic flow
(ν0, u0, T0) is unstable under the transverse perturbation of wavenumber k if the real
part of the growth rate, Re(σ), is positive. After some algebra, it can be shown that
the perturbed variables satisfy a system of ordinary differential equations:

L0(z)
d2

dz2
X̂ (z) +M0(z)

d

dz
X̂ (z) + N0(z)X̂ (z) = 0, (4.3)

where X̂ (z) is the five-element vector defined by X̂ (z) = (ν̂(z), û(z), v̂(z), ŵ(z), T̂ (z)),
and L0(z), M0(z), N0(z) are 5× 5 matrices which are given in Appendix A, §A.2. Note
that these matrices depend on the basic flow (ν0, u0, T0), on the wavenumber k and
on the growth rate σ. The boundary conditions at the plane can be written in the
same manner:

Q0(z)
d

dz
X̂ (z) + R0(z)X̂ (z) = 0 at z = 0, (4.4)

where Q0(z) and R0(z) are matrices which are also given in Appendix A, §A.2. At
infinity, the disturbances X̂ (z) have to vanish. It can be shown by an asymptotic ex-
pansion of equations (4.3) that the disturbances (û, v̂, ŵ, T̂ ) decrease as exp(−kz) when
z is much larger than the characteristic thickness of the basic flow (see Appendix B).
Matching the boundary conditions at infinity thus leads to numerical difficulties when
k becomes small since the computational domain varies as 1/k. Instead of writing
the boundary conditions at infinity, the equations are integrated up to a finite value
z = zmax and the disturbances (û, v̂, ŵ, T̂ ) are assumed to satisfy

d

dz
(û(z), v̂(z), ŵ(z), T̂ (z)) = −k(û(z), v̂(z), ŵ(z), T̂ (z)) at z = zmax. (4.5)

The system of five ordinary differential equations (4.3) together with the eight bound-
ary conditions (4.4) and (4.5) constitute an eigenvalue problem. For a given basic
flow (ν0, u0, T0) and wavenumber k, a non-zero solution (ν̂, û, v̂, ŵ, T̂ ) exists only for
specific values of the growth rate σ.

4.2. Numerical method

We have solved the above eigenvalue problem using a Chebychev spectral collocation
method (Gottlieb, Hussaini & Orszag 1984). The Chebychev collocation approach
has been shown to be well-adapted to the stability of boundary-layer flows, since
Chebychev polynomials resolve the boundary regions extremely well (Malik 1990). It
is thus suitable for our flow which is localized close to the plane. Moreover, the use
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of collocation makes the derivatives easy to compute and simplifies the treatment of
boundary conditions.

The principle of the Chebychev spectral collocation method is to discretize the ordi-
nary differential equations (4.3) by interpolating the perturbed functions
(ν̂(z), û(z), v̂(z), ŵ(z), T̂ (z)) on N + 1 collocation points given by

ςj = cos
πj

N
(j = 0, . . . , N). (4.6)

In order to relate the Chebychev space (ς ∈ [−1, 1]) to the physical domain (z ∈
[0, zmax]), we use a two-parameter algebraic transformation (Malik 1990)

z = a
1 + ς

b− ς , (4.7)

where b = 1 + 2a/zmax and a = zhzmax/(zmax − 2zh). The location zh corresponds to
ς = 0, i.e. half of the grid points are located in the region 0 6 z 6 zh. This mapping
allows us to cluster grid points near the plane. Using the expression for the derivatives
at the collocation points (Gottlieb et al. 1984), the system of ordinary differential
equations (4.3) together with the boundary conditions (4.4) and (4.5) reduces to a
linear algebraic eigenvalue problem that can be written in the following form:

AX̂ = σBX̂. (4.8)

Here, X̂ is the vector containing the 5(N + 1) elements of the interpolation of (ν̂(z),
û(z), v̂(z), ŵ(z), T̂ (z)) on the (N + 1) collocation points:

(ν̂0, . . . , ν̂N; û0, . . . , ûN; v̂0, . . . , v̂N; ŵ0, . . . , ŵN; T̂ 0, . . . , T̂ N), (4.9)

and A and B are 5(N + 1)× 5(N + 1) matrices computed from the matrices L0, M0

and L0. A and B depend on the basic flow and on the wavenumber k. Since the
boundary conditions (4.5) do not contain the eigenvalue σ, the matrix B is singular.
Note that the above discretization requires ten boundary conditions while the physical
boundary conditions (4.4) and (4.5) give only eight relations for the perturbed fields
(four at the plane and four at infinity). The same problem arises in the stability
analysis of compressible hydrodynamic flows (Malik 1990). Here we have chosen the
conservation of mass at zmax and the vertical momentum balance at the plane as the
two extra boundary conditions.

The generalized eigenvalue problem (4.8) is solved by using the scientific software
MatLab. The advantage of spectral methods is that the whole spectrum of eigenvalues
may be obtained. However, many eigenvalues are spurious due to the discretization
(Mayer & Powell 1992). The locations of these spurious modes are very sensitive to
the number N of collocation points while the physical modes are insensitive. This
allows us to select the few physical modes among the large spectrum of the discretized
problem. With a typical number of collocation points N = 50, the absolute error in
the physical eigenvalues is less than 10−7.

5. Results
5.1. Diagram of stability

Figure 4 gives the stability diagram in the plane (h, ν̄) for e = 0.6 and φ = 0.05. The
region of non-inverted density profiles is presented on the same diagram. Since we are
mainly interested in thin granular layer flows, we have limited our stability analysis to
h < 30 particle diameters. The study is also limited to mean density less than 0.4. For
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Figure 4. Stability diagram for e = 0.6 and φ = 0.05. The flow is stable inside the hatched region
and unstable outside. The bold solid line is the marginal curve. The dotted line separates a region
where the most amplified mode is propagating from a region where it is stationary. The grey zone
is the domain of non-inverted density profiles.

higher mean density, the density profile is very sharp and the number of collocation
points required for accurate computation increases dramatically.

The stability diagram can be divided in three regions: a stable region (hatched
region), an unstable region with stationary modes, an unstable region with propagating
modes in the transverse direction. The stable zone is delimited by the marginal curve
where the real part of σ vanishes. For h less than 7 particle diameters, the flow is
always stable whatever the value of the mean density. The unstable region is composed
of two regions: one where the most amplified mode is stationary i.e. Im(σ) = 0, and
one where the most amplified mode is propagating, i.e. with a non-zero phase velocity
in the transverse direction (Im(σ) 6= 0). Propagating modes are obtained at low density
while stationary instability occurs at high density.

The transition between the stationary instability and propagating modes appears
clearly in figure 5, where we have plotted the growth rate Re(σ) and Im(σ) as a
function of the wavenumber k, for the most unstable mode at different locations
in the stability diagram (a, b and c in figure 4). We keep the thickness constant
(h = 12.8) and increase the mean density from ν̄ = 0.08 to ν̄ = 0.16. The stationary
mode in (c) appears from the collapse of the two conjugated propagating modes.
In figure 5 we also observe that at the threshold of the instability, the first unstable
mode occurs at a finite wavenumber kc. We have systematically studied the critical
wavelength λc = 2π/kc along the marginal curve. When the instability is stationary,
the wavelength λc is nearly constant and equal to twice the thickness of the flow.
By contrast, the wavelength λc strongly varies along the marginal curve for the
propagating instability. In figure 6 we have plotted λc/h as a function of h. We
observe that λc is about 2.5 the thickness h of the flow as long as h < 15 particle
diameters but starts to increase for large thickness. For example, h = 21 corresponds
to a wavelength λc = 315, which is 15 times the thickness of the flow. We shall discuss
this behaviour later as the signature of a change in the instability mechanism.

5.2. Eigenfunctions

The three-dimensional stability analysis of the basic flow also gives the five eigen-
functions (ν̂(z), û(z), v̂(z), ŵ(z), T̂ (z)) for a given wavenumber k and growth rate σ.
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Figure 5. Growth rate Re(σ) and Im(σ) as a function of the wavenumber k for the most dangerous
mode. The thickness is constant (h = 12.8) and the mean density is increased: ν̄ = 0.08 (A), ν̄ = 0.13
(B) and ν̄ = 0.16 (C) (see the stability diagram in figure 4). e = 0.6 and φ = 0.05.
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Figure 6. λc/h (•) as a function of h, where λc is the wavelength selected by the instability along
the marginal curve for the propagating instability. The open circles ( e) are the same curve obtained
when the collisional dissipation γ1 is artificially set to zero. e = 0.6, φ = 0.05.

In figure 7, we have plotted the real part of the eigenfunctions corresponding to
the most amplified mode for (h = 8, ν̄ = 0.23). This mode is stationary. We ob-
serve that the perturbation of density ν̂(z) vanishes for z > h whereas the velocity
and temperature perturbations extend further and decay exponentially (see Ap-
pendix B). From these eigenfunctions, we can simply recover the perturbed field
(ν1, u1, v1, w1, T1)(y, z, t). For example, ν1(y, z, t) is obtained from the eigenfunction ν̂(z)
by the relation ν1(y, z, t) = Re[ν̂(z) exp(σt+ iky)] (see equation (4.2)). In the following
the perturbed fields are plotted for t = 0. In figure 8, we present the perturbations of
the flow corresponding to the most amplified stationary mode presented in figure 7
(h = 8, ν̄ = 0.23). The pattern is typical of that observed in the stationary unstable
region. Figure 8(a) presents the transverse velocity field (v1(y, z, 0), w1(y, z, 0)). We can
see that the motion in the transverse plane consists of counter-rotating vortices with a
pair of vortices per wavelength λ. This transverse flow is strongly correlated with the
perturbation of the longitudinal velocity. Figure 8(b) shows the contours of constant
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Figure 7. Real part of the eigenfunctions (ν̂(z), û(z), v̂(z), ŵ(z), T̂ (z)) corresponding to the
stationary mode (h = 8, ν̄ = 0.23, k = 0.4). e = 0.6, φ = 0.05.

value for the perturbed longitudinal velocity u1(y, z, 0). The material moving towards
the plane is flowing faster in the slope direction than the material rising up to the
free surface. Therefore, the three-dimensional structure of the perturbed flow consists
of longitudinal vortices with transverse variation of the longitudinal velocity.

The corresponding perturbations of density ν1(y, z, 0) and temperature T1(y, z, 0)
are given in figure 8(c, d ). The perturbed density results from two effects: the advection
of the basic flow by the transverse perturbed flow and the compressibility. In order to
compare more easily the density with the transverse flow, we have plotted in figure 9
the depth-averaged density µ(y) =

∫ zmax
0

ν1(y, z) dz as a function of the transverse
direction y (solid line). The vertical velocity is given on the same plot (dotted line).
We observe that the average density is higher where the flow is downwards and smaller
when the flow is upwards. The perturbation of density can also be interpreted in terms
of a free-surface perturbation. If we define the free surface as the surface where the
total density (ν0(z) + ν1(y, z, 0)) is constant and equal to 1% of the maximum value of
ν0(z), we obtain the bold solid line in figure 8(a). One can see that the downward part
of the flow corresponds to a trough while the upward part of the flow corresponds
to a crest.

Most of the features of the stationary modes are recovered for the propagating
modes except that the whole pattern is now drifting in the transverse direction, due
to the non-zero phase velocity (see figure 10). Qualitative differences exist since the
propagating modes lead to a phase shift between the eigenfunctions. The vortices
are asymmetric as shown in figure 10(a) and the transverse variations of density and
longitudinal velocity are no longer in phase but slightly shifted.

5.3. Influence of the parameters

The results of the stability analysis presented in the previous section have been ob-
tained for a given set of parameters e = 0.6 and φ = 0.05. Changing these parameters
modifies the solutions for steady uniform flows and therefore modifies the results
of the stability analysis. However, the main results of the previous section are not
qualitatively changed in the range of parameters (e, φ) where inverted density profiles
are observed. For instance, we have performed the stability analysis using e = 0.8 and
φ = 0.12 and recovered the instability and the formation of longitudinal vortices. The
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Figure 8. Perturbed fields corresponding to the stationary mode (h = 8, ν̄ = 0.23, k = 0.4): (a)
transverse velocity field, the bold solid line gives the free-surface deformation; (b), (c), (d ) contours
of constant values for longitudinal velocity, density and temperature. The grey level is white for the
most positive value and black for the most negative value. e = 0.6, φ = 0.05.

domain of propagating instability increases with higher values of φ and the vortices
are more tilted from the vertical for the propagating unstable modes (see figure 11).

However, an important difference with the case e = 0.6, φ = 0.05 is that the curve
of marginal stability may overlap the domain of non-inverted density profiles. This
means that for some values of φ and e, it is possible to find basic flows with non-
inverted density profiles which are unstable. These non-inverted unstable flows are
observed in a narrow range of the stability diagram for large thickness (h > 30) and
small density (ν̄ < 0.1). We will see in the next section that inelasticity is responsible
of the instability of such non-inverted density profiles.
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Figure 9. Perturbed depth-averaged density µ(y) =
∫ zmax

0
ν1(y, z) dz (solid line) as a function of y

for the stationary unstable mode (h = 8, ν̄ = 0.23, k = 0.4). The dotted line presents the transverse
variations of the perturbed vertical velocity w1 (arbitrary scale). The perturbed averaged density is
higher where the flow is going downwards (w1 < 0) and smaller when the flow is going upwards
(w1 > 0). e = 0.6 and φ = 0.05.

6. Discussion
6.1. Instability mechanism and role of the inelasticity

In figure 4, the domain of non-inverted density profiles is shown together with the
domain of instability. The correlation between the two regions suggests that inversion
of the density profile plays an important role in the instability mechanism. We have
checked the role of gravity by artificially modifying g in the linearized equations. In
a wide range of thickness and mean density, increasing gravity increases the growth
rate whereas decreasing gravity stabilizes the flow. In that case, the instability comes
from the inversion of the density profile, which is due to the self-heating at the plane
(‘Rayleigh–Bénard’ type of instability mechanism). In fluid mechanics, the Rayleigh–
Bénard instability is controlled at the threshold by a single dimensionless parameter,
the Rayleigh number Ra = gρ∆ρh3/ηK . In a granular flow, it is difficult to define
such a non-local control parameter since the Boussinesq approximation is far from
satisfied. Indeed, flow quantities (density, temperature) as well as transport coefficients
(viscosities, conductivity) vary strongly inside the flow.

As pointed out in the previous section, some flows with non-inverted density profiles
are unstable (e.g. with e = 0.8 and φ = 0.12). This means that gravity is not the only
destabilizing effect. Another well-known source of instability in granular flows is
inelasticity. Studies on two-dimensional shear flows have shown that the dissipation
due to inelastic collisions can lead to the formation of clusters (Tan & Goldhirsch
1997; Alam & Nott 1998). In order to better understand the role of dissipation in our
problem, we have performed the stability analysis by setting to zero the collisional
rate of energy dissipation γ1 in the linearized energy equation. In all the other terms,
inelasticity is kept in order to study the same basic flow. Figure 12 presents on the
same diagram the curve of marginal stability in the cases γ1 6= 0 and γ1 = 0 (e = 0.6,
φ = 0.05). We observe that the flow remains unstable in a wide range of parameters
with γ1 = 0. This proves that inelasticity is not necessary to obtain an instability. For
thin and dense flows, inelasticity stabilizes the flow whereas for dilute flows inelasticity
slightly lowers the threshold. The interesting point is that non-inverted density profiles
are always stable without inelasticity, whatever the choice of parameters e and φ.
The dissipation also strongly influences the wavelength selection λc at the threshold.
In figure 6 we have plotted λc/h as a function of h both for γ1 6= 0 (solid circles)
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Figure 10. Perturbed fields corresponding to the propagating mode (h = 10, ν̄ = 0.13, k = 0.2): (a)
transverse velocity field; (b), (c), (d ) contours of constant values for longitudinal velocity, density
and temperature. e = 0.6, φ = 0.05.

and γ1 = 0 (open circles). When the dissipation is zero γ1 = 0, the wavelength at
the threshold scales with the thickness of the flow over the whole range of thickness
(λc ∼ 2h). This implies that the increase of λc for large h observed in the real system
(γ1 6= 0) comes from inelasticity.

This analysis suggests that both gravity and inelasticity contribute to the instability
depending on the parameters. For thin and dense flows, gravity is the dominant
destabilizing effect giving rise to a Rayleigh–Bénard kind of instability, whereas for
large and dilute flows inelasticity is the principal ingredient of instability, giving rise
to a clustering-like instability. However, it is not possible to separate the two effects
since gravity and inelasticity are associated with the same unstable mode.
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Figure 12. Role of inelasticity on the stability diagram. The solid line is the marginal curve with
γ1 6= 0 and the dotted line is the marginal curve with γ1 = 0 (e = 0.6, φ = 0.05). The grey zone is
the domain of non-inverted density profiles.

6.2. Comparison with experimental observations

The present study captures the principal features of the longitudinal vortices insta-
bility. First, our analysis has shown that steady uniform flows down inclined planes
may be unstable under transverse perturbations. In the range of parameters of the
experiment (h = 10–12 grain diameters, ν̄ = 0.2–0.3), the physical origin of this in-
stability is the inversion of the density profile, which is induced by the self-heating
at the plane. Secondly, the unstable flow consists of longitudinal vortices leading to
surface deformation, and transverse variations of longitudinal velocity and density
in agreement with the experimental observations. As observed in the experiment, the
longitudinal velocity is larger in the troughs (i.e. where the flow is going downwards)
than in the crests (i.e. where the flow is going upwards). The same variation occurs
with the density: troughs are dense and crests are dilute. Finally, the instability selects
a wavelength which is always 2–3 times the average thickness of the flow above the
threshold, as observed in the experiment.

It is more difficult to perceive the relevance of this analysis in explaining the phase
velocity observed in the experiment. We have seen that depending on the control
parameters (h, ν̄), the growth rate of the instability may be complex, i.e. σi 6= 0.
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This imaginary part of the growth rate is associated to a phase velocity vφ = σi/k,
where k is the wavenumber. A typical order of magnitude for vφ is (0.1–0.5)

√
gd

which is a few percent of the chute velocity. This order of magnitude is compatible
with the drift velocity observed in the experiment. However, the theory predicts a
transition between propagating and stationary instability, which is not observed in
the experiment. Moreover, in the range of parameters of the experiment, the theory
predicts a stationary instability. The phase velocity observed experimentally is more
likely to be related to the very weak inclination of the pattern in the experiment.
This inclination is not taken into account in this study since we have restricted our
analysis to pure transverse perturbations (kx = 0, ky 6= 0). It would be interesting
to investigate the stability of steady uniform flows when a small perturbation in the
longitudinal direction (kx � 1) is added to the ky perturbation. This should give rise
to a phase velocity in the whole range of parameters.

The agreement between theory and experiment is only qualitative. The most impor-
tant discrepancy between theory and experiment lies in the range of angles where the
instability is predicted. With e = 0.6 and φ = 0.05, the predicted angles are θ ∼ 20◦
while in the experiment the minimum angle in order to observe the instability is
θ = 38◦ with sand 0.25 mm diameter. The same order of magnitude is obtained in the
experiment with monodisperse glass beads. In the theory, it is not possible to reach
such inclinations by varying the parameters (e, φ) except for non-physical values of
inelasticity (e ∼ 0). However, this discrepancy between theory and experiment is not
surprising since the standard kinetic theory is known to be limited. The kinetic theory
was first developed for quasi-elastic particles (e ∼ 1) and rather dilute flows. Even
under these conditions, experimental studies of two-dimensional collisional granular
flows down inclined planes have shown that the theory is not quantitative (Azanza
et al. 1999). One of the main problems of the kinetic theory is the determination of
the boundary conditions at the rough plane. Experiments indicate that, even in the
collisional regime, the material is structured near the plane (Azanza et al. 1999). This
local organization is not taken into account in the kinetic theory. Since boundary
conditions control the production of granular temperature, it is not surprising that
the theory fails to quantitatively describe steady uniform flows. Another difficulty
of the kinetic theory lies in the treatment of strongly inelastic particles. For high
inelasticity, additional terms should be introduced in the kinetic theory in order to
take into account the lack of separation between the microscopic and macroscopic
scales inherent to inelasticity (Tan & Goldhirsch 1999; Sela & Goldhirsch 1998).
However, such additional terms complicate considerably the equations and are still
the subject of active research (Goldhirsch 1999).

7. Conclusion
In this paper, we have performed a three-dimensional stability analysis of rapid

granular flows in the framework of the kinetic theory of granular gases. We have
shown that steady uniform flows down inclined planes can be unstable under trans-
verse perturbations. The structure of the unstable flow consists of longitudinal vortices
with transverse variations of free surface, chute velocity and density in agreement with
the experimental observations (Forterre & Pouliquen 2001). However, the agreement
is only qualitative. This is not surprising since the experiments take place in thin
flows (10 particle diameters thick), in a semi-dilute regime and use rather inelastic
particles, which is beyond the domain of applicability of the simple kinetic theory
used in the analysis. The validity of continuous hydrodynamics equations could even
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Figure 13. Top view of the free surface of the flow showing the formation of ‘scales’ when the plane
is strongly inclined (sand 0.25 mm mean diameter, θ = 52◦, hg = 15 m). The picture is taken with a
short shutter time of 1/10 000 s.

be discussed for such thin flows. However, our study shows that the kinetic theory is a
relevant framework for the description of rapid granular flows. The kinetic theory has
revealed a new instability mechanism specific to granular material: inelastic collisions
trigger a self-induced convection yielding longitudinal vortices in chute flows.

In classical fluid mechanics, Rayleigh–Bénard convection is the paradigm for pattern
forming instabilities and the study of spatio-temporal chaos. Therefore, an important
question is whether the granular convection observed in our experiment represents
the starting point of a similar scenario towards more complex structures. We have
observed in the experiment a new pattern when the plane is strongly inclined (θ > 50◦
with sand 0.25 mm in mean diameter). Instead of longitudinal streaks, a regular square
pattern looking like fish scales develops on the free surface, as shown in figure 13.
Similar structures have been observed in rotating drums (Fried, Shen & Thoroddsen
1998). Note that under such inclinations, a fast camera is necessary to capture this
structure. The appearance of this new pattern raises several issues. A first possibility
is that for this range of parameters the square pattern represents the most unstable
mode for the primary instability, as for example observed in inclined layer convection
(Daniels, Brendan & Bodenschatz 2000). This could be investigated by generalizing
the present stability analysis to longitudinal modes, i.e. kx 6= 0 and ky 6= 0. A second
possibility is that the ‘scales’ result from a secondary instability of the longitudinal
vortices, as a consequence of nonlinear effects. Such an evolution is well-documented
for classical fluid flows (Godrèche & Manneville 1998) but still remains an open issue
for granular flows.

This work was supported by the French Ministry of Research and Éducation
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discussions.

Appendix A
In this Appendix we detail the main steps of the linear stability analysis presented

in § 4.1.
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A.1. Linearization of the governing equations

The linearization of the mass equation (2.1), the momentum equation (2.2) and the
energy equation (2.3) around the basic flow (ν0, u0, T0) gives

∂ν1

∂t
= −ν0

(
∂v1

∂y
+
∂w1

∂z

)
− du0

dz
w1, (A 1)

ν0

(
∂u1

∂t
+

du0

dz
w1

)
= ν1 sin θ +

∂Σxy1

∂y
+
∂Σxz1

∂z
, (A 2)

ν0

∂v1

∂t
=
∂Σyy1

∂y
+
∂Σyz1

∂z
, (A 3)

ν0

∂w1

∂t
= −ν1 cos θ +

∂Σzy1

∂y
+
∂Σzz1

∂z
, (A 4)

3
2
ν0

(
∂T1

∂t
+

dT0

dz
w1

)
= Σxz1

du0

dz
+ Σxz0

∂u1

∂z
+ Σyy0

∂v1

∂y
+ Σzz0

∂w1

∂y

−∂qy1

∂y
− ∂qz1

∂z
− γ1. (A 5)

where Σ1 is the stress tensor disturbance, q1 is the heat flux disturbance and γ1 is the
energy dissipation disturbance given by

Σxy1 = η0

∂u1

∂y
,

Σxz1 = η0

∂u1

∂z
+ η1

du0

dz
,

Σyy1 = −P1 + (ξ0 − 2
3
η0)

(
∂v1

∂y
+
∂w1

∂z

)
+ 2η0

∂v1

∂y
,

Σyz1 = η0

(
∂v1

∂z
+
∂w1

∂y

)
,

Σzz1 = −P1 + (ξ0 − 2
3
η0)

(
∂v1

∂y
+
∂w1

∂z

)
+ 2η0

∂w1

∂z
,

qy1 = K0

∂T1

∂y
,

qz1 = K0

∂T1

∂z
+K1

dT0

dz
.

Here the pressure disturbance P1, the viscosity disturbance η1, the conductivity
disturbance K1 and the energy dissipated disturbance γ1 are linearized functions of ν1

and T1 which are given in table 2.
The system of equations (A 1)–(A 5) must be considered together with the bound-

ary conditions for the disturbances (ν1(z), u1(z), v1(z), w1(z), T1(z)). At the plane, the
boundary conditions are written as

w1 = 0 at z = 0, (A 6)

η0

∂u1

∂z
+ η1

du0

dz
= η∗0u1 + η∗1u0 at z = 0, (A 7)
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P1 = f′1(ν0)T0ν1 + f1(ν0)T1 = a0ν1 + b0T1

η1 = f′2(ν0)T0
1/2ν1 + 1

2
f2(ν0)T0

−1/2T1 = c0ν1 + d0T1

K1 = f′3(ν0)T0
1/2ν1 + 1

2
f3(ν0)T0

−1/2T1 = e0ν1 + h0T1

γ1 = f′5(ν0)T0
3/2ν1 + 3

2
f5(ν0)T0

1/2T1 = l0ν1 + m0T1

η∗1 = φf′6(ν0)T0
1/2ν1 + 1

2
φf6(ν0)T0

−1/2T1 = n0ν1 + p0T1

γ∗1 = (1− e2)f′7(ν0)T0
3/2ν1 + 3

2
(1− e2)f7(ν0)T0

1/2T1 = q0ν1 + r0T1

Table 2. Pressure disturbance P1, viscosity disturbance η1 and η∗1 , conductivity disturbance K1 and
energy dissipated disturbance γ1 and γ∗1 .

η0

(
∂v1

∂z
+
∂w1

∂y

)
= η∗0v1 at z = 0, (A 8)

−K0

∂T1

∂z
−K1

dT0

dz
= η1

du0

dz
u0 + η0u0

∂u1

∂z
+ η0

du0

dz
u1 + γ∗1 at z = 0, (A 9)

where η∗1 and γ∗1 are given in table 2. The first condition (A 6) simply expresses that
the plane is rigid. The last three conditions (A 7)–(A 9) are the boundary conditions
(2.10) and (2.11), which are linearized around the basic flow (ν0, u0, T0). At infinity,
we assume the disturbances vanish:

ν1, u1, v1, w1, T1 → 0 when z →∞. (A 10)

A.2. Matrices of the eigenvalue problem

The non-zero elements of the coefficient matrices in equations (4.3) and (4.4) are
given below. The definitions of the functions of the basic flow (a0, . . . , r0) are given in
table 2.

L22 = η0, L33 = η0, L44 = ξ0 + 4
3
η0, L55 = K0,

M14 = ν0, M21 = c0

du0

dz
, M22 =

dη0

dz
, M25 = d0

du0

dz
, M33 =

dη0

dz
,

M34 = ik(ξ0 + 1
3
η0), M41 = −a0, M43 = ik(ξ0 + 1

3
η0), M44 =

dξ0

dz
+

4

3

dη0

dz
,

M45 = −b0, M51 = e0

dT0

dz
, M52 = 2η0

du0

dz
,

M54 = −P0, M55 =
dK0

dz
+ h0

dT0

dz
,

N11 = σ, N13 = ikν0, N14 =
du0

dz
, N21 = sin θ + c0

d2u0

dz2
+

dc0

dz

du0

dz
,

N22 = −σν0 − k2η0, N24 = −ν0

du0

dz
, N25 = d0

d2u0

dz2
+

dd0

dz

du0

dz
,

N31 = −ika0, N33 = −σν0 − k2(ξ0 + 4
3
η0), N34 = ik

dη0

dz
,

N35 = −ikb0, N41 = − cos θ − da0

dz
, N43 = ik

(
dξ0

dz
− 2

3

dη0

dz

)
,
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N44 = −σν0 − k2η0, N45 = −db0

dz
,

N51 = c0

(
du0

dz

)2

+ e0

d2T0

dz2
+

de0

dz

dT0

dz
− l0, N53 = −ikP0, N54 = − 3

2
ν0

dT0

dz
,

N55 = − 3
2
ν0σ − k2K0 + d0

(
du0

dz

)2

+ h0

d2T0

dz2
+

dh0

dz

dT0

dz
− m0,

Q22 = η0, Q33 = η0, Q52 = −η0u0, Q55 = −K0,

R14 = 1, R21 = c0

du0

dz
− u0n0, R22 = −η∗0 , R33 = −η∗0 , R34 = ikη0,

R51 = −e0

dT0

dz
− c0u0

du0

dz
+ q0, R52 = −η0

du0

dz
, R55 = −h0

dT0

dz
− d0u0

du0

dz
+ r0.

Appendix B

Here we give the asymptotic behaviour of the disturbances (ν̂, û, v̂, ŵ, T̂ ) when z
is much larger than the characteristic thickness of the basic flow. The linearized
equations (4.3) which govern the disturbances can be written as

σν̂ = −ν0

(
ikv̂ +

dŵ

dz

)
− du0

dz
ŵ, (B 1)

ν0

(
σû+

du0

dz
ŵ

)
= ν̂ sin θ − k2η0û+

d

dz

(
η0

dû

dz
+ η̂

du0

dz

)
, (B 2)

ν0σv̂ = −ikP̂ + (ξ0 − 2
3
η0)

(
−k2v̂ + ik

dŵ

dz

)
− 2η0k

2v̂ +
d

dz

(
η0

dv̂

dz
+ ikη0ŵ

)
, (B 3)

ν0σŵ = −ν̂ cos θ − dP̂

dz
+ η0

(
ik

dv̂

dz
− k2ŵ

)
+

d

dz

[
(ξ0 − 2

3
η0)

(
ikv̂ +

dŵ

dz

)]
+2

d

dz

(
η0

dŵ

dz

)
, (B 4)

3
2
ν0

(
σT̂ +

dT0

dz
ŵ

)
=

(
η0

dû

dz
+ η̂

du0

dz

)
du0

dz
+ η0

du0

dz

dû

dz
− P0

(
ikv̂ +

dŵ

dz

)
− k2K0T̂

+
d

dz

(
K0

dT̂

dz
+ K̂

dT0

dz

)
− γ̂. (B 5)

In order to obtain the asymptotic expressions for these equations, one has to know
the asymptotic behaviour of the basic flow. Equation (3.5) shows that the zero-order
density ν0 decays exponentially to zero as

ν0 → exp

(
−cos θ

T0

z

)
when z is large. Using equations (3.5)–(3.7), the asymptotic behaviour of the basic
flow is given by

du0

dz
∼ ν0,

d2u0

dz2
∼ ν0, (B 6)
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dT0

dz
→ 0,

d2T0

dz2
→ 0, (B 7)

η0 → C,
dη0

dz
→ 0, (B 8)

K0 → D,
dK0

dz
→ 0, (B 9)

P0 ∼ ν0, (B 10)

ξ0 ∼ ν0
2,

dξ0

dz
∼ ν0

2, (B 11)

Substituting (B 6)–(B 11) into the linearized equations (B 1)–(B 5) gives an asymptotic
behaviour for z which is much larger than the characteristic thickness of the basic
flow. From equation (B 1), the perturbed density decays on the same length scale as
the basic flow:

ν̂ ∼ ν0. (B 12)

Therefore, the asymptotic limit of equations (B 1)–(B 5) is given by

d2û

dz2
− k2û = 0, (B 13)

d2v̂

dz2
− 4

3
k2v̂ + 1

3
ik

dŵ

dz
= 0, (B 14)

1
3
ik

dv̂

dz
+

4

3

d2ŵ

dz2
− k2ŵ = 0, (B 15)

dT̂

dz
− k2T̂ = 0. (B 16)

These equations are easily solved and give
û
v̂
ŵ

T̂

 ∼ exp(−kz)

when z is much larger than the characteristic thickness of the basic flow.
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Saric, W. S. 1994 Görtler vortices. Annu. Rev. Fluid Mech. 26, 379–409.

Savage, S. B. 1992 Instability of unbounded uniform granular shear flow. J. Fluid Mech. 241,
109–123.

Sela, N. & Goldhirsch, I. 1998 Hydrodynamic equations for rapid flows of smooth inelastic
spheres, to Burnett order. J. Fluid Mech. 361, 41–74.

Tan, M.-L. & Goldhirsch, I. 1997 Intercluster interactions in rapid granular shear flows. Phys.
Fluids 9, 856–869.



Stability analysis of rapid granular chute flows 387

Tan, M.-L. & Goldhirsch, I. 1999 Rapid granular flows as mesoscopic systems. Phys. Rev. Lett.
81, 3022–3025.

Wang, C.-H., Jackson, R. & Sundaresan, S. 1997 Instabilities of fully developed rapid flow of a
granular material in a channel. J. Fluid Mech. 342, 179–197.

Wang, C.-H. & Tong, Z. 2001 On the density waves developed in gravity channel flows of granular
materials. J. Fluid Mech. 435, 217–246.

Warr, S., Huntley, J. M. & Jacques, G. T. H. 1995 Fluidization of a two-dimensional granular
system: experimental study and scaling behavior. Phys. Rev. E 52, 5583–5595.


